Analyse Quantitative de l’Oxynitrure de Titane
Comprendre l'Analyse Quantitative de l’Oxynitrure de Titane
L'oxynitrure de titane (\(\text{TiO}_x\text{N}_y\)) est un matériau céramique avancé qui combine les propriétés de l'oxyde de titane (\(\text{TiO}_2\)) et du nitrure de titane (\(\text{TiN}\)). Ses propriétés (couleur, conductivité électrique, dureté, activité photocatalytique) peuvent être ajustées en faisant varier le rapport oxygène/azote (x/y). L'analyse quantitative vise à déterminer la composition élémentaire exacte, c'est-à-dire les valeurs de x et y, ce qui est crucial pour corréler la structure à ses propriétés et optimiser ses applications (revêtements, capteurs, photocatalyse, etc.).
Données de l'étude
- Titane (Ti) : \(65.70\%\)
- Oxygène (O) : \(22.00\%\)
- Azote (N) : \(12.30\%\)
- \(M(\text{Ti}) = 47.87 \, \text{g/mol}\)
- \(M(\text{O}) = 16.00 \, \text{g/mol}\)
- \(M(\text{N}) = 14.01 \, \text{g/mol}\)
Schéma : Composition Élémentaire d'un Échantillon de TiOxNy
Représentation conceptuelle de l'analyse d'un échantillon d'oxynitrure de titane.
Questions à traiter
- En considérant une base de 100g d'échantillon, calculer la masse de chaque élément (Titane, Oxygène, Azote).
- Calculer le nombre de moles de chaque élément dans ces 100g d'échantillon.
- Déterminer le rapport molaire le plus simple entre Ti, O, et N.
- Écrire la formule empirique de l'oxynitrure de titane sous la forme \(\text{TiO}_x\text{N}_y\) (en normalisant par rapport au Titane, c'est-à-dire \( \text{Ti}_1\text{O}_x\text{N}_y \)).
- Calculer la masse molaire de la formule empirique trouvée.
Correction : Analyse Quantitative de l’Oxynitrure de Titane
Question 1 : Masse de chaque Élément dans 100g d'Échantillon
Principe :
Si on considère une base de 100g d'échantillon, le pourcentage massique de chaque élément correspond directement à sa masse en grammes dans ces 100g.
Données spécifiques :
- Pourcentage massique de Titane (Ti) : \(65.70\%\)
- Pourcentage massique d'Oxygène (O) : \(22.00\%\)
- Pourcentage massique d'Azote (N) : \(12.30\%\)
Calcul :
Pour 100g d'échantillon :
Vérification : \(65.70 + 22.00 + 12.30 = 100.00 \, \text{g}\).
Question 2 : Nombre de Moles de chaque Élément
Principe :
Le nombre de moles (\(n\)) d'un élément est obtenu en divisant sa masse (\(m\)) par sa masse molaire atomique (\(M\)).
Formule(s) utilisée(s) :
Données spécifiques :
- Masse de Ti : \(65.70 \, \text{g}\) ; \(M(\text{Ti}) = 47.87 \, \text{g/mol}\)
- Masse de O : \(22.00 \, \text{g}\) ; \(M(\text{O}) = 16.00 \, \text{g/mol}\)
- Masse de N : \(12.30 \, \text{g}\) ; \(M(\text{N}) = 14.01 \, \text{g/mol}\)
Calcul :
Quiz Intermédiaire 1 : La masse molaire d'un élément représente :
Question 3 : Rapport Molaire le Plus Simple
Principe :
Pour trouver la formule empirique, on divise le nombre de moles de chaque élément par le plus petit nombre de moles obtenu. Cela donne les rapports stœchiométriques les plus simples entre les atomes.
Données spécifiques :
- \(n(\text{Ti}) \approx 1.3725 \, \text{mol}\)
- \(n(\text{O}) = 1.3750 \, \text{mol}\)
- \(n(\text{N}) \approx 0.8779 \, \text{mol}\) (valeur la plus petite)
Calcul :
On divise chaque nombre de moles par le plus petit (\(n(\text{N}) \approx 0.8779\)) :
Les rapports sont approximativement Ti:1.56, O:1.57, N:1.00. Pour obtenir des nombres entiers, on peut essayer de multiplier par 2 (car 1.56 est proche de 1.5 = 3/2) :
Le rapport molaire le plus simple est donc approximativement Ti : O : N = 3 : 3 : 2.
Question 4 : Formule Empirique (\(\text{TiO}_x\text{N}_y\))
Principe :
La formule empirique représente le rapport le plus simple des atomes dans un composé. Si on normalise par rapport au Titane (c'est-à-dire que l'indice du Ti est 1), on divise les rapports molaires obtenus précédemment par le rapport molaire du titane (avant multiplication par 2). Initialement, nous avions Ti:1.5634, O:1.5662, N:1.0000. Pour normaliser par rapport à Ti=1, on divise tout par le rapport de Ti (1.5634) :
Calcul :
La formule serait \(\text{TiO}_{1.00}\text{N}_{0.64}\). Pour obtenir des indices plus proches d'entiers, on peut multiplier par 3 (car 0.64 x 3 ≈ 1.92 ≈ 2 et 1 x 3 = 3) : \(\text{Ti}_3\text{O}_3\text{N}_2\). Si on normalise \(\text{Ti}_3\text{O}_3\text{N}_2\) pour que Ti ait un indice de 1, on divise par 3 : \(\text{Ti}_1\text{O}_1\text{N}_{2/3}\). Donc \(x=1\) et \(y=2/3 \approx 0.67\). La valeur de \(0.64\) est proche de \(2/3\).
Alternativement, si nous utilisons les rapports 3:3:2 et que nous voulons Ti = 1 : \(\text{Ti}_{3/3}\text{O}_{3/3}\text{N}_{2/3} \rightarrow \text{Ti}_1\text{O}_1\text{N}_{0.667}\). Donc \(x \approx 1.00\) et \(y \approx 0.67\).
Quiz Intermédiaire 2 : La formule empirique d'un composé :
Question 5 : Masse Molaire de la Formule Empirique
Principe :
La masse molaire d'un composé est la somme des masses molaires de ses atomes constitutifs, multipliées par leurs indices respectifs dans la formule.
Formule(s) utilisée(s) :
Données spécifiques (pour \(\text{TiO}_{1.00}\text{N}_{0.67}\)) :
- \(M(\text{Ti}) = 47.87 \, \text{g/mol}\)
- \(M(\text{O}) = 16.00 \, \text{g/mol}\)
- \(M(\text{N}) = 14.01 \, \text{g/mol}\)
- \(x \approx 1.00\)
- \(y \approx 0.67\) (ou \(2/3\))
Calcul :
En utilisant \(y = 2/3\) pour plus de précision :
Quiz Rapide : Testez vos connaissances
1. L'oxynitrure de titane est un matériau :
2. La première étape pour déterminer une formule empirique à partir des pourcentages massiques est généralement de :
3. Changer le rapport O/N dans \(\text{TiO}_x\text{N}_y\) permet de :
Glossaire
- Oxynitrure de Titane (\(\text{TiO}_x\text{N}_y\))
- Composé céramique contenant du titane, de l'oxygène et de l'azote, dont les proportions x et y peuvent varier, influençant ses propriétés.
- Analyse Quantitative
- Détermination des quantités (masses, pourcentages, concentrations) des constituants d'un échantillon.
- Composition Massique
- Proportion en masse de chaque élément chimique dans un composé, généralement exprimée en pourcentage.
- Masse Molaire Atomique (M)
- Masse d'une mole d'atomes d'un élément chimique, exprimée en g/mol.
- Mole (mol)
- Unité de quantité de matière du Système International, contenant environ \(6.022 \times 10^{23}\) entités élémentaires (atomes, molécules, ions, etc.).
- Formule Empirique
- Formule chimique qui indique le rapport le plus simple des nombres entiers d'atomes de chaque élément présent dans un composé.
- Masse Molaire (du composé)
- Masse d'une mole d'un composé chimique, calculée en additionnant les masses molaires atomiques de tous les atomes de sa formule, exprimée en g/mol.
- Stoichiométrie
- Étude des rapports quantitatifs entre les réactifs et les produits dans les réactions chimiques, ou des proportions des éléments dans un composé.
D’autres exercices de chimie des materiaux:
0 commentaires